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Abstract: We exploit the Ward-Slavnov-Taylor identity relating in genaral covariant

gauges the 3-gluons to the ghost-gluon vertices to conclude either that the ghost dressing

function is finite and non vanishing at zero momentum while the gluon propagator diverges

(although it may do so weakly enough not to be in contradiction with current lattice data)

or that the 3-gluons vertex is non-regular when one momentum goes to zero. We stress

that those results should be kept in mind when one studies the Infrared properties of the

ghost and gluon propagators, for example by means of Dyson-Schwinger equations.
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1. Introduction

The infrared behaviour of QCD Green functions is a very active and hot subject. This

is particularly true in the Yang-Mills sector. Dyson-Schwinger (DS) equations have been

intensively studied but the consequences of the Ward-Slavnov-Taylor identities (WSTI)

have been largely overlooked. It turns out that, after some regularity assumptions are made

on the ghost and gluon vertex functions, they do provide extremely strong constraints on

the zero momentum limit of both the ghost and the gluon propagator, namely that the ghost

dressing function is finite non vanishing and the gluon propagator diverges.1 The derivation

of these results is indeed rather simple and is the main goal of this letter.

We have already presented in previous publications ([1, 2]) arguments in favor of a

finite non-vanishing ghost dressing function at zero momentum. Notice that this was partly

based on the study of Dyson-Schwinger equations. Now, although the Dyson Schwinger

equations are exact, their practical implementation always involves various approximations

and hypotheses which cast a doubt on the general validity of the results so obtained. On

the contrary, using the WSTI appears to be quite simple and to require only a minimum

amount of extra information on the regularity of the vertex functions. In our opinion

this circumstance puts its consequences on a very firm ground and we think any acceptable

solution for the propagators should comply with them. As shown in ref. [1], a non-vanishing

ghost dressing function could be also favored by the analysis of the Ghost propagator

Dyson-Schwinger equation. Thus, one is led to conclude either that the gluon propagator

diverges and the ghost dressing is finite non-vanishing or that the regularity hypotheses on

the vertices should fail.

1This divergence can however be so soft as not to contradict the apparent finiteness previously stated

from lattice data.
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2. Ward-Slavnov-Taylor identity and the infrared behaviour of the gluon

propagator

The ghost-gluon vertex Γ̃µ is written as

Γ̃abc
µ (p, q; r) = g0f

abc Γ̃µ(p, q; r) = g0(−ipν)fabcΓ̃νµ(p, q; r), (2.1)

where −p (q) is the outgoing (incoming) ghost momentum and r is that of the gluon, its

tensorial structure defined by the following general decomposition [3]:

Γ̃νµ(p, q; r) = δνµ a(p, q; r) − rνqµ b(p, q; r) + pνrµ c(p, q; r)

+rνpµ d(p, q; r) + pνpµ e(p, q; r) . (2.2)

The ghost-gluon vertex is related to the 3-gluon vertex, Γabc
λµν(p, q, r), through the Ward-

Slavnov-Taylor identity ([4, 5]):

pλΓλµν(p, q, r) =
F (p2)

G(r2)
(δρνr2 − rρrν)Γ̃ρµ(r, p; q) (2.3)

−
F (p2)

G(q2)
(δρµq2 − qρqµ)Γ̃ρν(q, p; r) .

In this equation F and G are the ghost and gluon dressing functions, defined respectively

as

〈cc̄〉 =
F (q2)

q2
and

〈AµAν〉 =
1

q2

[
G(q2) (δµν −

qµ qν

q2
) + (1 − ξ)

qµ qν

q2

]
, (2.4)

with ξ the usual gauge fixing parameter. We recall in this respect that the WSTI holds

in any covariant gauge and that the longitudinal part of the propagator is trivial. We

now make the hypothesis that Γλµν(p, q, r) 2 has a well defined limit when anyone of its

arguments goes to 0, the other ones being kept non-vanishing. Note that this restricts but

does not forbid the possible presence of singularities in the coefficient functions since they

could be compensated by kinematical zeroes stemming from the basis tensors. Indeed, this

assumption and WSTI are all one needs to conclude that the gluon propagator diverges at

zero momentum. The two transversal projectors in the r.h.s. of eq. (2.3) imply that a well

defined limit at zero momentum for the l.h.s, after contraction with rν or qµ, can only be

zero. For instance, multiplying eq. (2.3) with rν gives

pλrνΓλµν(p, q, r) = −F (p2)
q2

G(q2)

(
δρµ −

qρqµ

q2

)
rνΓ̃ρν(q, p; r) . (2.5)

2Actually this assumption regards only the longitudinal part , i.e. with at least one longitudinal gluon,

of the vertex function (see ref. [3] for its definition) since the purely transverse one trivially disappears from

the STI.
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Since we suppose that the left hand side has a well defined limit when q goes to zero, the

same has to be true for the right hand side. However, the vector

rνΓ̃ρν(q, p; r) ≡ X(q, p; r) rρ + Y (q, p; r) qρ , (2.6)

where X and Y are combinations of the form factors introduced earlier in eq. (2.2),

X(q, p; r) = a(q, p; r) − (r · p) b(q, p; r) + (r · q) d(q, p; r)

Y (q, p; r) = r2c(q, p; r) + (r · q) e(q, p; r) , (2.7)

after contraction with the tensor δρµ −
qρqµ

q2 ,

(
δρµ −

qρqµ

q2

)
rν Γ̃ρν(q, p; r) =

(
rµ −

(q · r)

q2
qµ

)
X(q, p; r) (2.8)

gives an explicit dependence on the direction of q. This is in contradiction with a well

defined limit unless the zero-momentum limit of both sides in eq. (2.5) is 0.

It is worth noticing that the same conclusion can be otherwise proven by exploiting

the following general property of the 3-gluon vertex:

pλqµrνΓλµν(p, q, r) = 0 . (2.9)

This last result can be straightforwardly derived from WSTI, and it is supported by the

perturbative results for the 3-gluon vertex in ref. [6]. Then, as −p = q + r

qλqµrνΓλµν(p, q, r) + rλqµrνΓλµν(p, q, r) = 0 . (2.10)

Thus, simply by considering the leading behaviour as q → 0 one proves that:

lim
q→0

rλrνΓλµν(−q − r, q, r) = rλrνΓλµν(−r, 0, r) = 0 . (2.11)

In the usual notation and for a general tensorial decomposition of the 3-gluon vertex (see

e.g. ref. [7]) this is nothing else than the known result T3(p
2) = 0. Equipped with this result

(which is valid, of course, when any of the arguments goes to 0) and with our previous

hypothesis that Γλµν has a well defined limite when anyone of its arguments goes to 0, we

can conclude that the zero-momentum limit for the l.h.s. of eq. (2.5) is null, i.e.

lim
q→0

pλrνΓλµν(p, q, r) = − rλrνΓλµν(−r, 0, r) = 0 , (2.12)

and, of course, the same for the r.h.s. of eq. (2.5),

lim
q→0

[
F (p2)

q2

G(q2)

(
rµ −

(q · r)

q2
qµ

)
X(q, p; r)

]
= 0 . (2.13)

This, in turn, implies that

lim
q→0

q2

G(q2)
= 0 , (2.14)
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i.e. that the gluon propagator must diverge in the infrared, unless X(q, p; r) itself goes to

zero. However this is certainly not the case for large enough values of p2 when Davydychev

et al’s perturbative formulae ([6]) can be used.

For the Ward-Slavnov-Taylor identity to be satisfied there is a compatibility condition

which does not involve the 3-gluon vertex (cf ref. [3]). Applying the scalar X introduced

earlier in eq. (2.7) it reads

F (q2)

G(p2)
X(p, q; r) =

F (r2)

G(p2)
X(p, r; q) (2.15)

and has to be satisfied for all p’s, which allows to get rid of the G(p2) denominators. Let

us consider this relation in the small r limit. The X-factor on the left is the same one

(except for the interchange of p and q) that appeared in the r.h.s. of eq. (2.5) and remains

finite in view of the hypothesis made concerning Γλµν . This implies that F (r2)X(p, r; q)

too remains finite, which implies a strong correlation between the infrared behaviours of

the ghost propagator and of the ghost-ghost-gluon vertex.

To summarize:

• Γλµν(p, q, r) infrared-finite and X(q, p;−p − q) 6= 0 =⇒ G(q2)
q2 −→

q→0
∞

• There exists a strong relationship between IR behaviours of the ghost propagators and

of the ghost-gluon vertex: F (r2) ∝ X(p, q; r)/X(p, r; q) when r → 0 and F (0) is

presumably finite non-zero.

We recall that these conclusions hold for all covariant gauges. As will be briefly dis-

cussed below, the implications for gluon and ghost propagators in any particular gauge

depend on the non-perturbative behaviour of the combination of scalars, X(p, q; r) when q

or r goes to 0. Although some perturbative results in arbitrary gauges might be invoked [6],

these would be taken as nothing but a rough indication.

3. Discussion and conclusion

The Ward-Slavnov-Taylor identity, supplemented with reasonable regularity assumption

for the 3-gluon vertex imposes that in any covariant gauge the gluon propagator is infrared

divergent, however slowly this may be.3 The behaviour of the dressing function in this

region is usually described using an “infrared exponent”:

G(q2)
q̃2→0

(q2)αG . (3.1)

A divergent propagator would imply either that αG is smaller than one or that the power

law is modified by logarithmic corrections. There is no such divergence on the lattice in the

landau gauge: the propagator at zero momentum is obviously finite and, actually, it has

been measured directly (our own simulations presently give a value of αG close to one but

3In the eventuality that not only Γλµν(p, q, r) but the scalar form-factors involved in it would be finite

the divergence could be still stronger, including the possibility of a divergent dressing-function.
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do not allow to exclude any of the mentioned possibilities). Therefore the divergence could

only manifest itself through the volume dependence. The Adelaide group has performed

a detailed analysis of this dependence (cf ref. [8]) and its results rather favours a finite

IR propagator. Very recently, some authors [9] have pointed that very-low-momentum

data obtained from large asymmetric lattices seem to favour a vanishing gluon propagator.

However, that result is not confirmed by the authors of ref. [10, 11]. We neither agree

with that conclusion and discuss about that and their implications in ref. [12]. While the

WSTI and its consequences hold in all covariant gauges those observations have been made

in the special case of the Landau gauge where there are of course no longitudinal gluons

although the WSTI involves the non transverse vertex function; in that sense it appears

as some kind of “limiting case” of the general covariant gauge. One could therefore think

of a divergent term whose coefficient would vanish as 1 − ξ as it is the case for instance

for the one-loop anomalous dimension of the ghost-gluon vertex. But this would lead to a

hardly acceptable discontinuity in the r.h.s of equation (2.3) when ξ → 1. A simpler and

–maybe– more natural explanation would be to imagine that the rate of divergence is too

slow to be seen at present.

Regarding the ghost infrared exponent, we have to make an hypothesis about the

way the combination of scalars, X(p, r; q) defined by eq. (2.7), in the right hand side of

equation (2.15) behaves at small-r. Davydychev et al’s formulae show that, at one loop,

both b and d suffer from a logarithmic divergence in this limit. The one in b would be

compensated by the (r.p) factor in front of it, but not the one in d. In any case we do

not know what the situation is for the full non-perturbative quantities. If X(p, r; q) goes

to some finite non-zero limit as r goes to zero F (r2) will also do. This is the situation

we had considered in ref. [1, 2] and it implies that αF is zero. If, on the contrary, the

Davydychev et al’s perturbative divergence persists for X(p, r; q) in the non-perturbative

sector, F will have to go to zero with r. The remarks we have made previously regarding

the Landau gauge apply of course also for the ghost propagator but at least the finiteness

of the dressing function seems to be on a safe ground since one should have to imagine a

divergent part with a coefficient proportional to δ(1 − ξ).

Some of the results we have presented in this note are not new (for instance the

conclusion that F(0) is finite and non zero can be found in ref. [7]) but it seems that their

consequences have often been overlooked. The arguments we have presented rest exclusively

on the Ward-Slavnov-Taylor identity with which, we think, any sensible solution, among

which the ones derived from Schwinger-Dyson equations, should comply. In view of our own

experience with lattice simulations, our preference would go to a weakly divergent

gluon propagator together with a finite and non-zero ghost dressing function.

Of course simulations with large lattices would be necessary to discriminate unambiguously

between the various possibilities, as would be the use of a general covariant gauge to cope

with the would-be special characteristics of the Landau gauge.
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